一级A毛片免费观看久久精品,国产一级做a爱片久久毛片,久久性生大片免费观看性,在线欧美69V免费观看视频,无码久久亚洲高清,亚洲精品视频免费在线观看,国产在线分享视频直播

Welcome: Puoao Corporation Technology Co.,Ltd
Language: Chinese ∷  English

Industry new

Fast, High Capacity Fiber Transmission Gets Real for Data Centers

Using a bi-directional configuration, engineers at Nokia demonstrated real-time, high capacity signal transmission suitable for coupling adjacent data centers with current compliance standards


SAN DIEGO — A cutting edge, “off-line” signal transmission mechanism, experimentally demonstrated just a few years ago, is now on-line as a real-time bidirectional transmission system.  At OFC 2018, the single-most important annual event in optical communications, being held March 11-15 in San Diego California, a research team from Nokia will report the real-time, bi-directional transmission of 78 interleaved, 400 gigabit per second (Gb/s) channels with a 31.2 terabit per second (Tb/s) fiber capacity.

At twice the 200 Gb/s standard rate found in most applications, the C-band signals were transmitted over a single, 90-kilometer-long single-mode fiber. Such a high transmission capacity and rate would offer a particularly attractive capacity bump to current data center interconnections, where nearby data centers are coupled together to form a single, larger center.

Fundamentally speaking, there are two ways to go about increasing a data center’s capacity: either increase the number of (parallel) fibers through which the data travels, or increase how much data you transmit through existing fibers. While the use of additional fibers is a more straightforward approach (particularly for data centers which usually rent fibers to use), it is expensive both in price and power consumption.

Perhaps unsurprisingly, there is considerable interest in finding ways of increasing the transmission capacity of fibers already in use. As multiplexers (devices that combine multiple signals into one) and transponders become more sophisticated, so do the available signal encoding/decoding processes. Current standards for wavelength division multiplexed (WDM) signals, for instance, can combine up to 96 channels on C band.

The off-line proof-of-principle experiments first demonstrating the high capacity, error-free 400 Gb/s WDM transmission capitalized on a very high spectral efficiency to boost capacity in the fiber. While this is not the first real-time implementation of 400 Gb/s channels, it is the first to be successful with an impressive 8 bit per second-per hertz spectral efficiency.

“So far, three different companies have demonstrated a real-time 400 Gb/s transponder over the last three years, but we are the only ones reporting 400 Gb/s with such high spectral efficiency,” said Thierry Zami, who will be presenting the team’s work. “The spectral efficiency allows us to provide quite a large fiber capacity. So, in this case we claim 31.2 Tb/s, but in practice, without the limitations in terms of number of loading channels in our lab, we could have reached about 38 Tb/s over whole C band. This is really one of the innovative points.”

In addition to using the real-time, commercially available transponders, the setup used components that are compliant with current network standards. After testing the unidirectional transmission configuration, Zami and his team wanted to further improve the resulting Q2 margins, which represent the signal to noise power ratio.

“It was important for us to maintain simple amplification, only based on erbium doped fiber amplifiers, and to use standard fibers,” said Zami. “To increase the system margins observed with the unidirectional set up, we could have decided to make the same unidirectional experiment with slightly larger channel spacing, for instance. But we said, ‘no’ because we wanted to remain compliant as much as possible with the standard grid.”

The team instead developed a bi-directional transmission set up with the same 90-kilometer fiber, where the even and odd 400 Gb/s channels, with the same 50 GHz grid spacing, transmit in opposite directions. For this configuration, they measured Q2 margins at least twice as large as for the unidirectional version. And because it employed two 100 GHz-spaced multiplexers to create the 50 GHz channel spacing, unlike the unidirectional system’s individual 50 GHz multiplexer, it benefits from wider filtering to exhibit better tolerance to frequency detuning.

CONTACT US

Contact: Mr Gu

Phone: 15976963346

Tel: 0756-5221115

Email: sales@puoao.com

Add: Broadview Garden, Whlite Vine Road,Doumen zone, Zhuhai,Guangdong, China

Scan the qr codeClose
the qr code
芦山县| 元江| 柘城县| 黑龙江省| 财经| 利辛县| 百色市| 瑞丽市| 遵义县| 镇康县| 海晏县| 西丰县| 庆云县| 登封市| 色达县| 乌拉特前旗| 宜良县| 北票市| 武清区| 伊宁市| 石景山区| 宜良县| 桓仁| 宜兰县| 阿巴嘎旗| 故城县| 三河市| 商丘市| 远安县| 甘孜| 大埔县| 永寿县| 克什克腾旗| 恭城| 绥中县| 兴安盟| 苏尼特左旗| 耒阳市| 文成县| 玛沁县| 龙泉市|